

18F- saturation yield in Large Volume cylindrical IBA target

M.Leporis, P.Rajec, M.Reich, M.Štefečka, O.Szöllos, P.Kováč BIONT, Karloveska 63, 842 29 Bratislava, Slovakia

Introduction

In last decade increasing demand for clinical F-18 Fludeoxyglucose requires a greater F-18 fluoride production. From the other side increasing price of enriched O-18 water compel us to find the most effective way of F-18 activity production. One of the possible way, how to optimize and increase yield of F-18, is to increasing target current with retaining the same or less volume of enriched water. Optimization of F-18 production on IBA Large Volume cylindrical target is presented.

Methods and Results

Irradiations of $[180]H_2O$ by 18 MeV proton beams with intensities 40-55 μ A were performed on CYCLON 18/9, IBA cyclotron and on **LV** cylindrical IBA target:

Table of Main parameters of LV cylindrical target.			
Target current	40-55 μA		
Target volume Filling volume	2.5 ml 2.0 ml		
Target pressure	30-35 bar		
Standard yield declare by IBA	5Ci/2h EOB		
Window Burst Pressure	>50 bar		

Irradiated enriched water was transported to the hot cell using RDS (Radioactive Delivery System) system and was measured in Curriementor 4 Isotope Calibrator made by PTW.

At the beginning it was necessary to satisfy several requirements:

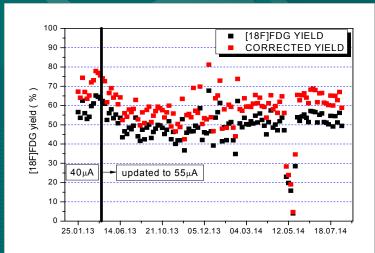
 \succ target and water cooling.

Using a simple two dimensional equation we can roughly estimate the equilibrium temperature inside the target:

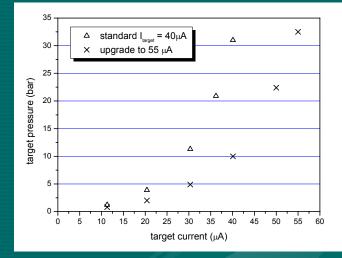
 $\Delta t = HT / Ak$

where:

 Δt = the temperature rise in the target chamber over cooling water temperature H = is the heat load


T = thickness of target metal wall

A = area of metal in contact with target water


k = thermal conductivity

In our case with heat load 720 W= 40 μ A * 18 MeV – Δt = 78 °C. From the curve of boiling point of water as a function of pressure, we can observe t = 212°C at 20 bar or 243°C at 35_bar respectively, which correspond max. heat load up to 90-95 μ A of target current.

FDG synthesis yields.

Target Pressure as a Function of Beam Current

pressure and filling water volume.

Filling water volume was from 2 to 2.15 ml to guarantee stop all beam in water. Also during experiments for safety reasons the operating pressure was limited to 35 bar as the window rupture pressure is >50 bar for used 0.05 mm Havar foil. In this case increasing target volume with increasing current was provided with longer tube.

The saturated yields of F-18 for 40 μ A to 55 μ A target currents are given in Table below. No systematic decrease in yields with increasing target current was observed and yields were in line with the 230±10 mCi/ μ A measured at acceptance test of target.

Target current (μΑ)	Satur. yield (mCi/µA)		Activity ^{EOB} 1h (GBq)
40	231	8.55	108
45.5	232	8.6	116
50	229	8.46	132.5
55	232	8.6	150

Activities in the target at EOB

The [18F]FDG yields from productions using the TRACERlab-Mx module are shown in left Figure. All presented productions of F-18 were prepared with LV target with 55 μ A. No decrease in the yield was observed with increasing beam current. The lower yields in May 2014 were due to problems with inpurity of enreached water [18O]H₂O.

Conclusion

It has been demonstrated that it is possible to produce routinely 250 GBq / 2 hr (6.8 Ci / 2 hr) of F-18 Fluoride using LV cylindrical target (operating conditions: 55 μ A, 18 MeV, 98% enriched water). As the next step we want to test dual beam – 2 x 55 μ A with two LV targets and expected activity about 500 GBq of F-18 Fluoride in 2 hours is expected.