# Combining multi-product commercial production in a GMP environment with Clinical & R&D activities



Gameiro<sup>1</sup>, Cristiana; Bormans<sup>2</sup>, Guy; Abrunhosa<sup>3</sup>, Antero; <sup>4</sup>Luurtsema, G. and Elsinga<sup>4</sup>, Philip <sup>1</sup>IBA-Ion Beam applications SA/BE; <sup>2</sup>PET Center, University of Leuven/BE; <sup>3</sup>ICNAS, University of Coimbra/PT; <sup>4</sup>Medical Imaging Centre, University of Groningen/NL.

### Introduction

Radiopharmaceutical facilities mostly provide [18F]FDG and are progressively evolving into multi-product sites to support new developments and R&D programs. In this paper, three successful sites in Europe handling both routine production and R&D activities will be described.

#### Methods

In order to combine all the activities in a safe way, a risk-assessment should be designed and implemented. There a several methodologies such as FMECA, FMEA etc. One of the critical steps in the radiopharmaceutical production is the synthesis. The use of a fully automated (minimum human intervention) synthesizer with disposables cassettes; easy to use (training, SOP, software); reliable and robust is an essential component to mitigate the risks.

#### Results

umcg

The Medical Imaging Center of University of Groningen, in the Netherlands, is one of the most active centers in Nuclear Medicine. The center has been producing routinely

a wide range of radiopharmaceuticals since 1992; [<sup>18</sup>F]FDG, [<sup>18</sup>F]FDOPA (electrophilic), [<sup>18</sup>F]NaF, [<sup>18</sup>F]FES and [<sup>18</sup>F]PSMA, [<sup>68</sup>Ga]DOTATOC, and also [<sup>11</sup>C]choline, [<sup>11</sup>C]methionine, [<sup>11</sup>C]PiB, and [<sup>13</sup>N]NH<sub>3</sub>. The center combines the routine production with an intense program covering basic research, pre-clinical and clinical

research studies in several areas (basic radiochemistry, neurology oncology, and cardiology). The most Frequent produced <sup>18</sup>F-tracers are [<sup>18</sup>F]FDG, [<sup>18</sup>F]NaF, [<sup>18</sup>F]PSMA and [<sup>18</sup>F]FEOBV. They are all produced on dedicated Synthera® synthesis modules. Currently, [<sup>18</sup>F]FDOPA (nucleophilic) and [<sup>18</sup>F]FES are under development using the same type of Synthera® platform.

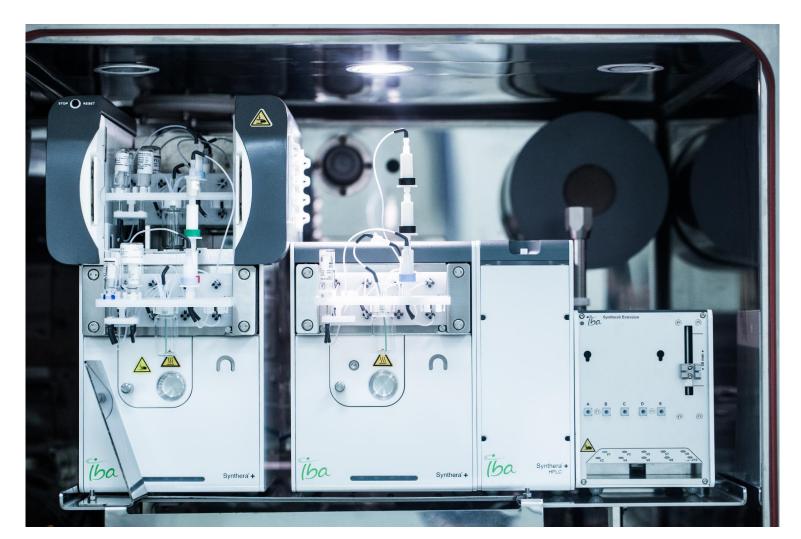


Picture of the UCMG facility in Groningen/NL

|                                   | 2018 | 2017 | 2016 | 2015 |
|-----------------------------------|------|------|------|------|
| H <sub>2</sub> 15O                | 1    | -    | -    | 38   |
| <sup>18</sup> F-FDG               | 255  | 228  | 247  | 240  |
| <sup>13</sup> NH <sub>3</sub>     | 26   | 16   | 42   | 41   |
| <sup>18</sup> F-Dopa              | 46   | 44   | 66   | 64   |
| <sup>11</sup> C-Tyrosine          | -    | -    | -    | -    |
| <sup>11</sup> C-Choline           | 17   | 32   | 47   | 55   |
| <sup>11</sup> C-Methionine        | 41   | 23   | 26   | 20   |
| <sup>89</sup> Zr-tracers totaal** | 48   | 42   | 69   | 40   |
| <sup>11</sup> C-Raclopride        | 5    | 15   | -    | -    |
| <sup>11</sup> C-HTP               | -    | -    | -    | -    |
| <sup>68</sup> Ga-Dota-Toc         | 113  | 108  | 93   | 37   |
| <sup>18</sup> F-FES               | 34   | 34   | 38   | 35   |
| <sup>18</sup> F-FLT               | -    | -    | -    | -    |
| <sup>68</sup> Ga-PSMA-Hbed        | 158  | 92   | 15   | _    |
| <sup>11</sup> C-PK11195           | 29   | 18   | 17   | 10   |
| <sup>11</sup> C-Verapamil         | -    | -    | -    | -    |
| <sup>11</sup> C-PIB               | 33   | 33   | 34   | 20   |
| <sup>18</sup> F-NaF <sup>*</sup>  | 6    | 40   | 37   | 3    |
| <sup>11</sup> C-MDL               | -    | -    | -    | -    |
| <sup>11</sup> C-Acetate           | -    | -    | -    | -    |
| <sup>18</sup> F-FDHT              | 15   | 16   | 19   | 25   |
| <sup>11</sup> C-DASB              | -    | 2    | 5    | 27   |
| <sup>11</sup> C-SA4503            | -    | -    | -    | _    |
| <sup>18</sup> F-FEOBV             | 36   | 22   | 3    | 3    |

List of tracers produced at UCMG from 2015-2018

ICNAS is a research unit of the University of Coimbra in Portugal that hosts a GMP-compliant PET production facility, which supports clinical and pre-clinical R&D programs and supplies RPs to nearby hospitals. The unit is in operation for distribution since 2012 and currently has 5 radiopharmaceuticals (RPs) authorized in the market ([¹8F] FDG, ([¹8F] FCH, [¹8F]NaF, and [⁶8Ga]DOTA-NOC and [⁶8Ga]PSMA). All produced with the Synthera <sup>®</sup> platform, which in total represents over 5000 cycles. An extensive R&D program is in place with production of other tracers based on ¹8F (F-DOPA), [¹3N]NH<sub>3</sub>, ¹¹C (Methionine, Raclopride, Flumazenil, PK11195, β-CIT and PiB) and <sup>64</sup>Cu -ATSM.


|                            | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018           |
|----------------------------|------|------|------|------|------|------|----------------|
| <sup>18</sup> F-FDG        | 322  | 309  | 280  | 337  | 429  | 484  | 517            |
| <sup>18</sup> F-NaF        |      |      | 3    | 20   | 19   | 14   | 14             |
| <sup>18</sup> F-Colina     |      | 7    | 49   | 75   | 55   | 26   | 33             |
| <sup>11</sup> C-PiB        | 40   | 37   | 35   | 87   | 131  | 119  | 178            |
| <sup>11</sup> C-CITFE      |      |      |      | 3    | 45   | 69   | 38             |
| <sup>11</sup> C-PK11195    |      |      | 12   | 15   | 52   | 18   | 24             |
| <sup>11</sup> C-Raclopride |      | 41   | 22   | 27   | 26   | 3    |                |
| <sup>11</sup> C-Metionina  |      |      | 12   | 8    | 12   | 10   | 13             |
| <sup>18</sup> F-DOPA       |      |      |      | 3    | 14   | 20   | 49             |
| <sup>13</sup> N-Amónia     |      |      |      | 6    | 32   | 22   | 3 <sub>3</sub> |
| <sup>68</sup> Ga-DOTANOC   |      | 85   | 154  | 220  | 354  | 351  | 400            |
| <sup>68</sup> Ga-PSMA      |      |      |      | 3    | 65   | 254  | 343            |
|                            |      |      |      |      |      |      |                |

List of tracers produced and evolution at ICNAS/PT from 2012-2018

The PET centre of the KU Leuven has been operating for 28 years producing several radiopharmaceuticals for routine use; such as: [¹³N]NH₃, [¹8F]FDG, [¹8F]-FET, [¹⁵O]H₂O, [¹¹C]methionine, [¹¹C]-PiB. The PET center has a strong cooperation with several pharmaceutical companies (Merck, J&J, UCB among others) supporting their drug development mainly in the CNS area. Recently, the center has built GMP laboratories to meet the evolving strict pharmaceutical regulations. Besides, the non-GMP lab is used for radiochemistry and radiopharmaceutical research and tracer production for non-clinical applications.

## Conclusion

The three centers described have demonstrated that the combination of routine GMP production of multiple radiopharmaceuticals and a busy research program can be successfully achieved. The synthesizer is a key element to be considered. In summary, pros and cons are listed by the users for the synthesizer used in most of these facilities.



Synthera®+ platform: (from left to right) Synthera®+ synthesized with IFP loader, Synthera® synthesizer, Synthera®+ HPLC & Synthera® Extension

## PROS

- Reliable and robust
- Small and easily fit in the hotcell
- Short preparation time
- Software is easy to understand (fast learning, fast to operate)
- Software intuitive to develop new sequences (open platform)
- Synthera<sup>®</sup> platform is flexible(different IFPs for different tracers, easy to adapt the software program & modular concept with versatile Synthera<sup>®</sup> Extension and HPLC systems)
- New version comes with the electronics outside & possibility to install the automatic IFP loader (to load the cassettes automatically)

## CONS

- Vacuum pump needs attention &
- maintenance with the previous versions
  RFID reader issue in the previous versions