Evaluation of the radionuclidic purity of ¹²³I and ¹³¹I samples

M.F.Catanoso, J.A.Osso Jr. Instituto de Pesquisas Energéticas e Nucleares IPEN/CNEN-SP Brazil marcela.forli@gmail.com

Introduction: Several radioisotopes are used in the medical area both for treatment and diagnostic, in particular ¹²³I and ¹³¹I. The radioisotope ¹²³I is used in diagnosis through the SPECT technique. It is routinely produced at IPEN in cyclotron through the reaction: ^{124}Xe (p, 2n) ^{123}Cs -> ^{123}Xe -> ^{123}I . The radioisotope ¹³¹ is used both in diagnosis and therapy due to its physical characteristics of decay by B and its γ -ray emissions that are softened with the use of specific collimators for diagnosis^[1]. It is routinely produced at IPEN using the nuclear reactor through the indirect reaction: 130 Te (n, γ) -> 131m Te -> 131 Te -> ¹³¹I, irradiating compounds containing Te. The radiopharmaceuticals prepared with these radioisotopes go through rigorous quality control tests and the chemical purity of the primary radioisotopes ¹²³I and ¹³¹I are within the permissible limits currently defined. However, the presence of some chemical contaminants can prejudice the biomolecules labeling (monoclonal antibodies and peptides), that will produce radiopharmaceuticals of first generation to the oncology area. The objective of this work was to evaluate the radionuclidic purity of ¹²³I and ¹³¹I samples produced at IPEN, as part of a project aiming the purification of these radioisotopes, allowing the labeling of biomolecules. Material & Methods: ¹²³I is produced at IPEN by irradiating enriched ¹²⁴Xe gas with protons in the CYCLONE 30 Cyclotron. After the irradiation the gas is removed and the ¹²³I, present in the walls of the target holder, is washed with H₂O. This solution is taken to a process cell and is percolated through an anionic exchange resin, adsorbed and further eluted in the form of iodide in a small volume of 1 mol.L⁻¹ NaOH. ¹³¹I is produced through the irradiation of TeO₂ targets in the IEA-R1m nuclear reactor. After the irradiation, the ¹³¹I is separated by dry distillation, where the targets are put in an oven, heated at 760°C for 2 hours and the ¹³¹I, volatile, is carried by an O₂ gas stream. This gas runs thought 3 traps: the first, containing H_2SO_4 to retain Te, the second containing 0.1 mol.L⁻¹ NaOH at low temperature to retain ¹³¹I in the form of iodide, and the last, containing 0.1 mol.L⁻¹ NaOH at room temperature to retain any ¹³¹I that was not retained in the second trap. Samples of ¹²³I and ¹³¹I were evaluated for their radionuclidic purity. First their activities were analysed in a dose calibrator CRC15 from CAPINTEC with positions previously calibrated for the radioisotopes. Then samples were analysed using a hiperpure germanium detector, model CX1518, from CANBERRA in order to perform the qualitative and quantitative determination of the gamma emitters impurities. <u>Results:</u> The analyses performed with 123 I showed the presence of 123m Te (4.5 x10⁻³%), 121m Te (1.75 x10⁻³%), 121 Te (2.55 x10⁻¹%), 95m Tc (1.1 x10⁻³%), 94 Tc (4.6 x10⁻⁴%) and ⁵⁶Co (1.6 x10⁻¹%) in the filters used in the production and ^{123m}Te (3.14 x10⁻⁶%), ^{121m}Te (8.93 x10⁻⁸%), ¹²¹Te (4.23 x10⁻³%), ^{95m}Tc (1.45 $x10^{-7}$ %) and ⁹⁶Tc (3.53 $x10^{-5}$ %) in samples obtained from production. In relation to 131 I, it was observed the presence of 123m Te (2.66 x10⁻⁴ %), 121m Te (1.04x10⁻²%), 121 Te (2, 7x10⁻⁴ %), 129 Te (1.40 x10⁻¹ %), 131 Te (1.31 x10⁻² %), 95m Tc (5.86

 $x10^{-4}$ %), ⁵⁷Co (9.72 $x10^{-4}$ %) and ⁶⁰Co (3.31 $x10^{-6}$ %).

Discussion/Conclusion: Regarding to the purity of the ¹³¹I, the radionuclides ¹²¹Te, ¹²¹Te, ¹²³Te, ¹²⁹Te e ¹³¹Te come from the neutron activation^[2,3] of several Te isotopes present on the targets of TeO₂, while ⁵⁷Co e ⁶⁰Co come from the Co activation in the nuclear reactor. For ¹²³I, the ¹²¹Te impurity comes from the nuclear reactions such as ¹²⁴Xe(p,4n), while ¹²³Te comes from the decay of ¹²³I. The presence of the radionuclides of Co and Tc is due to the activation of Ni and Mo impurities, from the window material of the target holder. It is very clear that, despite the low level of contaminants, there is the presence of chemical impurities in the samples, that must be separated to allow the proper labeling of the biomolecules of interest.

<u>References:</u> [1] Dias, L. A. P. Development of a method of production of 1311 by the technique of dry distillation of tellurium oxide fuel. IPEN [2001] 63p.

[2] European Pharmacopoeia; 5th Edition; Vol. 1; Strasbourg, França; 2004.
[3] The United States Pharmacopeia, The National Formulary. 25th Edition; Vol.

[3] The United States Pharmacopeia, The National Formulary. 25th Edition; Vol. 2; USA, 2007.