Life, Science.

RADIO PHARMA SOLUTIONS

35 years of experience concentrated in one innovation.

30 years of innovation and expertise concentrated in the CYCLONE®KIUBE

The first world reference

In 1986, IBA launched the first compact cyclotron for industrial production of radioisotopes. This revolutionary new design increased the production efficiency by a factor 15 and created a world reference.

30 years later, IBA once again makes history with the launch of its new 18 MeV cyclotron. CYCLONE®KIUBE is more compact and the most powerful mid energy PET cyclotron. It has been developed with three keywords in mind: Reliability, High Performance and Flexibility. These keywords were defined in collaboration with our Users.

Expertise benefiting to a large installed base

With IBA as partner, you have the assurance to remain at the forefront of innovation and to benefit of every novel feature for tracer production.

More than 300 cyclotrons installed over 5 continents demonstrate this expertise and customer satisfaction.

Support over the lifetime of your system

IBA provides continuous support over the lifetime of your project, expanding your skills and applications, boosting your uptime and maximizing the return on your investment with all the latest innovations, services and training.

In addition, the system is built so that future upgrades can be easily implemented to keep your cyclotron state-of-the-art.

150
IBA PATENTS
ON PARTICLE
ACCELERATORS

35 YEARS OF EXPERTISE

— A story of Cyclotron Innovations

1985

DEEP VALLEY CYCLOTRON 5 X MORE OUTPUT, 3 X LESS ENERGY EP022786 2000

NIOBIUM NIRTA® FLUOR TARGET FOR BETTER ISOTOPE QUALITY EP1716576 2003

DUAL BEAM REGULATION FOR DOUBLED PRODUCTION EP1566082 2006

TARGET SHIELDS FOR EASY DECOMMISIONING EP2033199 2012

ZEPHIROS® CONTROL SYSTEM FOR EASE OF USE EP2581914 2016

CYCLONE KIUBE EP16169489, EP16169490 EP16169494, EP16169497 EP16171282 2021

EXTRACTION SYSTEM WITH 4 STRIPPERS

1990

VECTIO® BEAM TRANSPORT LINE FOR R&D 2002

NIRTA® SOLID TARGET TO GIVE ACCESS TO NEW ISOTOPES IP: EP1570493 2005

HIGH CURRENT MACHINE 150 A FOR INCREASED PRODUCTION CAPACITY 2008

TWIN PROTON SOURCES TO MAXIMIZE UPTIME EP2196073 2011

NIRTA® FLUOR CONICAL TARGET FOR REDUCED ENRICHED WATER USE WO 2012/055970 2015

GA-68 PRODUCTION USING A LIQUID TARGET EP15170854 ZU18
CUSTOM ENER

CUSTOM ENERGY CYCLONE® KIUBE EP3503693

Cyclone®KIUBE

Designed for Ever.

— CYCLONE® KIUBE will evolve with you, for you

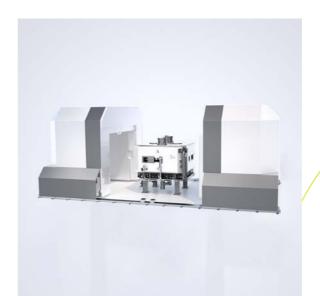
Upgradable like no other

CYCLONE®KIUBE is upgradable like no other cyclotron, so you can increase your production capacity; from 100 μA to 150 μA , 180 μA or even up to 300 μA on target.

With a lower initial investment, you can start with the CYCLONE®KIUBE 100 while maintaining the ability to increase your PET Center's capacity over time with an on-site upgrade.

Infinite flexibility

With eight independent exit ports, CYCLONE® **KIUBE** is the most flexible system, producing the widest range of PET radioisotopes.


A full range of Nirta® targets are available giving you access to 18 F, 13 N, 15 O, 11 C [CO₂ & CH_a], 18 F₂, 68 Ga, ...

In addition, IBA provides Nirta® Solid target technology for the production of radioisotopes such as ⁶⁴Cu, ⁸⁹Zr, ¹²⁴I, ...

Custom Energy.

The IBA-patented custom energy CYCLONE®KIUBE allows users to irradiate the target directly at a fixed energy level of 13, 14 or 15 MeV, without using a degrader.

This is our typical production schedule thanks to the IBA 8-exit ports cyclotron:

Time	Radionuclide	Radio pharmaceutical
4.30-6.00	¹⁸ F	FDG
6.30-8.00	¹⁸ F	F-other
8.15-8.45	¹¹ C	CHOLINE
10.00-12.00	¹⁸ F	MK9470
12.30-13.00	¹¹ C	Raclopride
13.30-13.40	¹³ N	NH3
14.00-16.00	¹⁵ 0	10*H ₂ 0
16.30-17.00	¹¹ C	PDE10A

Prof. Dr Guy Bormans
Head of radiopharmacy
KATHOLIEK UNIVERSITEIT LEUVEN, BELGIUM

CYCLONE® KIUBE WITH SELF-SHIELDING OPTION*

10 Ci 370 GBq 100 µA **16C 592 GBq** 150 μΑ

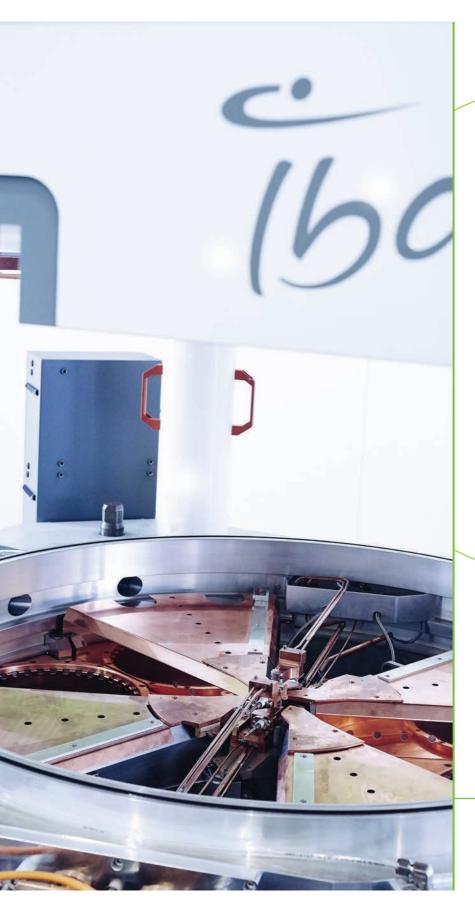
UPGRADABLE

CYCLONE® KIUBE VAULTED*

10Ci 370 GBq 100 μA

16Ci **592 GBq** 150 μA

20C 740 GBq180 µA


30Ci 1110 GBq 300 µA

UPGRADABLE

Max potential, max capacity.

^{*}Production in Curies of 18F- in 2 hours run

Designed to Deliver.

After 10 years of excellent experiences with Cyclone® 18/9,

we have now added the new CYCLONE® KIUBE. Outstanding! All well thought engineering details made the operation unprecedentedly easy, reliable and maintenance fast and safer, lowering dose exposure.

Francisco Alves

Chief physicist & head of Cyclotron ICNAS-UNIV. COIMBRA - PORTUGAL

CYCLONE®KIUBE delivers outstanding performances

The most cost-effective

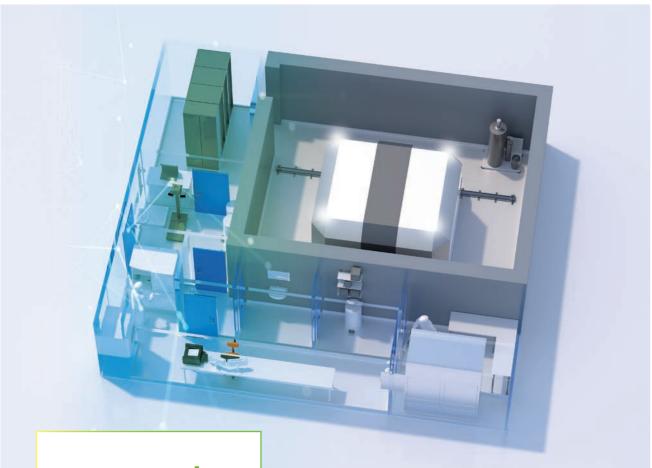
It has been demonstrated that 18 MeV is the optimal proton energy for the highest production yield of most of PET radioisotopes. Your production capacity is optimized so as your revenue; your center footprint is kept to a reasonable size so as your investment. This means that 18 MeV is the most costeffective solution for your PET isotopes production.

The growing demand for radioisotopes means a greater need for efficiency. CYCLONE®KIUBE saves enriched water and has the lowest power consumption per Curie produced, yet is the most powerful

The most performant cyclotron

 ${\tt CYCLONE} {\tt @KIUBE} \ {\tt offers} \ {\tt unmatched} \ {\tt production} \ {\tt capacity} \ {\tt for} \ {\tt an} \ {\tt internal} \ {\tt source} \ {\tt PET} \ {\tt cyclotron}. \ {\tt A} \ {\tt 2-hour}$ dual beam run could generate up to 30 Ci of ¹⁸F-; hence, an incredible batch of FDG synthesized on your Synthera®+ modules.

Maximum reliability


Its unique twin-proton sources give maximum reliability, as switching to the second source during operation is simple, fast and completely automated, translating into more than 99% source uptime. Moreover, the production is optimized in real time thanks to the automatic tuning of the ion source, stripper and magnetic field.

HIGHEST PRODUCTION CAPACITY

μА	¹⁸ F- capacity/run	FDG doses/run(*)
CYCLONE®KIUBE 100	2 hours : 10 Ci / 370 GBq	60 - 100
CYCLONE®KIUBE 150	2 hours : 16 Ci / 592 GBq	96 - 160
CYCLONE®KIUBE 180	2 hours : 20 Ci / 740 GBq	120 - 200
CYCLONE®KIUBE 300	2 hours : 30 Ci / 1110 GBq	180 - 300

(*) using Synthera® FDG chemistry (12h shelf life - stability). May vary according to local conditions, transport time and patients schedule.

Designed for you.

Compact design

Its compact design can fit into any existing cyclotron vault.

Cyclone®KIUBE is also available with a self-shielding option.

IntegraLab® ONE

IBA experts designed the **world's most optimized** [c]GMP PET center with a footprint of less than $100m^2$ [1,070 square feet] including a 18 MeV self-shielded cyclotron, while allowing a very high production capacity of ¹⁸F for FDG and ⁶⁸Ga.

IntegraLab®ONE is a real ready-to-run integrated Radiopharmacy, designed to ensure a fast, smooth and risk-free set up of your [c] GMP radiopharmacy.

IntegraLab® PLUS

IntegraLab® PLUS is a **fully integrated** solution, combining the equipment and services required to establish a Radiopharmaceutical [c]GMP Production Center tailored to your precise needs.

Our approach is **truly comprehensive**, taking your project from building design to production, with full regulatory compliance, and with the selection, integration, installation and qualification of the equipment needed to meet your radioisotope production goals.

A self-monitoring cyclotron that maximizes your uptime

Unmatched reliability

CYCLONE® **KIUBE** has an unmatched reliability. Its compact design includes redundancy for the main systems [ion sources, strippers, targets, vacuum pumps,...].

The software self-tests prior to production and automatically self-audits after maintenance, leading to maximized uptime.

The choice of low activation material combined with the optimization of the maintenance tasks ensure the lowest radiation exposure for your staff.

User-friendly Software

The software is very user-friendly, meaning it is easier to train and rotate the staff that operates the system. It provides an easy and guided control of the system with a simple production mode for an automatic set up to maximise your ¹⁸F production and the manual mode gives you full flexibility.

The 24/7 helpdesk provides you with peace of mind, with IBA experts analyzing cyclotron data in order to diagnose and solve 95% of problems remotely.

Nirta® target technology

Complete target range for your extended needs

— ¹⁸F- conical liquid target

High power with low enriched water consumption

- Efficient design to achieve 4Ci/ml in 2 hour-run
- **-** Lowest enriched water consumption on the market
- Wide range of volumes available: your production capacity will always match your needs
- Quick and low dose maintenance: less pieces and o-rings
- **–** Easier disassembling, assembling and manipulation.

Liquid targets

Unique solution for ⁶⁸Ga production

The unique and patented (US10600528B2 and EP3101660B1) solution for production of 68Ga-radiopharmaceuticals for human use has many advantages:

- Seamless automation of the whole process with the Synthera® platform
- No risk of long-lived ⁶⁸Ge [271 days] in the final product
- Production every hour depending on patient schedule
- Simple & cost effective GMP production process for in-house use or for distribution production similar to the ¹⁸F process

	Conical 5	Conical 8	Conical 12	Conical 16
Chemical form		[¹⁸ F-]		
Target reaction		¹⁸ 0(p,n) ¹⁸ F		
Target material		H ₂ ¹⁸ 0		
Window material		Havar®		
Insert material		Niobium		
Enriched water volume (ml)	1.8 - 2.0	2.3 - 2.5	2.7 - 3.0	3.5 - 4.3
Irradiation time (min)	120	120	120	120
Recovered activity EOB [Ci] / [GBq]	5 / 185	8 / 296	12 / 444	16 / 592

Thanks to the combination of the CYCLONE®KIUBE and the

Nirta^{® 18}F targets,

we have a cost-effective solution for large production of ¹⁸F; high activity in a short run with low enriched water consumption. We are happy with the reliability and performance and we are proud to produce 60 Ci ¹⁸F a day to deliver to hospitals for patient diagnosis.

68Ga ⁶⁴Cu^[1] Chemical form [68Ga]GaCl_a [13N]NH_o [64Cu]CuCl_a 68Zn(p,n)68Ga $^{16}O(p,a)^{13}N$ 68Ni(p,n)68Cu Target reaction H₂0 (natural) + 5mMol Ethanol Target material Enriched 68Zn salt enriched ⁶⁴Ni solution Niobium Havar® Niobium Window material Niobium Niobium Insert material Niobium Energy degrador Graphite na 18 MeV 16 MeV 18 MeV Beam energy Target yield (mCi/µA sat) 60 300 irradiation time (min) 3.7 3.7 Insert volume [ml] 200/7.4 1000 / 37 50/1.85 Recovered activity EOB [mCi] / [GBq]

[1] not commercially available

 $\hbox{\it (2) depending on target solution concentration and other parameters}$

Gas targets

	¹⁵ 0	¹¹ C - CO ₂	¹¹ C – CH ₄
Chemical form	[150]02	[¹¹C]CO ₂	[¹¹ C]CH ₄
Target reaction	¹⁵ N(p,n) ¹⁵ O	¹⁴N[p, a]¹¹C	¹⁴ N(p, a) ¹¹ C
Target material	$^{15}N_2 + 0.5-1\% O_2$	$N_2 + 0.5-1\% \ 0_2$	$N_2 + 5\% H_2$
Window material	Aluminum	Aluminum	Aluminum
Insert material	Aluminum	Aluminum	Aluminum
Energy degrador	Graphite	na	na
Beam energy	13 MeV	18 MeV	18 MeV
Insert volume [ml]	4 - 5/min (cont. flow)	55	40
Target yield(mCi/µA sat)	30	150	60
irradiation time (min)	online	30	30

Solid targets

Enlarge your cyclotron possibilities.

The Vectio® beam line extension can be installed for high power solid target work and for research with proton beam.

Solid target technology for the production of novel radioisotopes

- Routine production and research programs
- Full packages available including dissolution and purification modules
- Possibility to have a pneumatic transport system between the cyclotron vault and the radiochemistry laboratory.
- The Nirta® Plus solid target can be installed inside the self-shielding

	Nirta® solid target	Nirta® Plus solid target	Nirta® High Power ^[1,2] solid target
Target current	20-40 μΑ	40-75µA	up to 300μA³
Target angle	90°	35°	customizable capsule (from 10°-90°)
Automated transfer	1 way in option	1 way in option	2 ways

TYPICAL PRODUCTION WITH SOLID TARGETS - PET/SPECT ISOTOPES

	⁶⁴ Cu ⁽¹⁾	89 Zr ⁽¹⁾	124 ⁽¹⁾	123 [1]	⁶⁶ Ga	⁶⁷ Ga	¹¹¹ In	86 Y
Half-life	12.7h	78h	4.18d	13.27h	9.49h	78h	67h	14.7h
Target reaction	⁶⁴ Ni[p,n] ⁶⁴ Cu	⁸⁹ Y[p,n] ⁸⁹ Zr	¹²⁴ Te[p,n] ¹²⁴ I	¹²³ Te[p,n] ¹²³ I	⁶⁶ Zn[p,n] ⁶⁶ Ga	⁶⁷ Zn[p,n] ⁶⁷ Ga		⁸⁶ Sr[p,n] ⁸⁶ Y
Target Material	⁶⁴ Ni	89Y	¹²⁴ Te	¹²³ Te	⁶⁶ Zn	⁶⁷ Zn	¹¹¹ Cd	⁸⁶ Sr
Energy (on target) (MeV)	14	15	15	16	16	16	16	18
Yield [mCi/µAh] ^[2]	1.34-8.5[3]	0.34	0.45	2.34	~	~	~	~

(2) The production rate is given by yield x target current x irradiation time.
 The maximum target current depends on the irradiation station (Nirta® Solid, Nirta® Solid Plus, Nirta® High power solid)
 (3) depending on target material thickness. 0.073 mCi/μAh/mg of Ni-64

Max potential, max capacity. Cyclone®KIUBE

 $^{^{3}}$ Energy degrader on capsule will reduce beam current capacity to 150 μA

Technical features.

	Cyclone® KIUBE 100	Cyclone® KIUBE 150	Cyclone® KIUBE 180	Cyclone® KIUBE 300		
HIGH CAPACITY PROTON BEAM						
Energy		18 M	1eV			
Beam current on target	100 μΑ	150 μΑ	180 μΑ	300 μΑ		
TARGET FLEXIBILITY						
Number of target ports		3	}			
Simultaneous extracted beams		2				
Vectio® Beam Transport Line		short, med	lium, long			
LOW POWER CONSUMPTION						
Stand-by mode		< 3	kW			
Beam-on mode	< 45 kW < 55 kW < 60 kW < 65 kW					
COMPACT DESIGN						
Cyclotron weight	18 Tons					
Cyclotron overall dimensions [m]	1.9 x 1.9 x 1.8 [l x w x h]					
Internal room dimensions [m]	3.8 x 3.8 x 2.5 - Recommended : 4 x 4 x 2.5 [l x w x h]					
Internal room dimensions with self-shielding [m]	6 x 7 x 3 [l x w x h]	-	-		
Self-shielding overall dimensions/piece [m]	4.645 x 2.770 x 2	2.575 [l x w x h]	-	-		

ABOUT IBA (Ion Beam Applications S.A)

IBA is a cancer diagnostics and treatment company and the worldwide technology leader in the field of proton therapy. The company's expertise lies in the development of next-generation proton therapy technologies and radiopharmaceuticals that provide oncology care providers with premium quality services and equipment, including IBA's leading fully-integrated IntegraLab® system.

ABOUT IBA RADIOPHARMA SOLUTIONS

Based on long-standing expertise, IBA RadioPharma Solutions supports hospitals and radiopharmaceutical distribution centers with their in-house radioisotope production by providing them with global solutions, from project design to the operation of the facility. In addition to high-quality technology production equipment, IBA has developed in-depth experience in setting up GMP radiopharmaceuticals production centers.

CONTACT US:

Chemin du Cyclotron, 3 | 1348 Louvain-la-Neuve, Belgium Tel.: + 32 10 201 275 | Fax: + 32 10 47 59 58 | RadioPharmaSolutions@iba-group.com

